Local and parallel stabilized finite element methods based on full domain decomposition for the stationary Stokes equations
نویسندگان
چکیده
منابع مشابه
Augmented Mixed Finite Element Methods for the Stationary Stokes Equations
Abstract. In this paper we introduce and analyze two augmented mixed finite element methods for a velocity-pressure-stress formulation of the stationary Stokes equations. Our approach, which extends analogue results for linear elasticity problems, is based on the introduction of the Galerkin least-squares type terms arising from the constitutive and equilibrium equations, and the Dirichlet boun...
متن کاملAdaptive discretization of the stationary and incompressible Navier - Stokes equations by stabilized Finite Element Methods
Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open access to all the world. Please share with us how this access benefits you. Your story matters.
متن کاملMixed Finite Element Methods for Incompressible Flow: Stationary Stokes Equations
In this article, we develop and analyze a mixed finite element method for the Stokes equations. Our mixed method is based on the pseudostress-velocity formulation. The pseudostress is approximated by the RaviartThomas (RT) element of index k ≥ 0 and the velocity by piecewise discontinuous polynomials of degree k. It is shown that this pair of finite elements is stable and yields quasi-optimal a...
متن کاملAdaptive Domain Decomposition Methods for Finite and Boundary Element Equations
The use of the FEM and BEM in diierent subdomains of a non{overlapping Domain Decomposition (DD) and their coupling over the coupling boundaries (interfaces) brings about several advantages in many practical applications. The paper presents parallel solvers for large-scaled coupled FE{BE{DD equations approximating linear and nonlinear plane magnetic eld problems as well as plane linear elastici...
متن کاملParallel Domain Decomposition Solver for Adaptive Hp Finite Element Methods
In this paper, the development and implementation of highly parallelizable domain decomposition solvers for adaptive hp finite element methods is discussed. Two-level orthogonalization is used to obtain a reduced system which is preconditioned by a coarse grid operator. The condition number of the preconditioned system, for Poisson problems in two space dimensions, is proved to be bounded by C(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Nonlinear Sciences and Numerical Simulation
سال: 2021
ISSN: 2191-0294,1565-1339
DOI: 10.1515/ijnsns-2019-0191